В математической теории графов и информатике граф — это совокупность объектов со связями между ними. Объекты представляются как вершины, или узлы графа, а связи — как дуги, или рёбра. Для разных областей применения виды графов могут различаться направленностью, ограничениями на количество связей и дополнительными данными о вершинах или рёбрах. Многие структуры, представляющие практический интерес в математике и информатике, могут быть представлены графами. Граф Граф или неориентированный граф G — это упорядоченная пара G: = (V,E), для которой выполнены следующие условия: V (а значит и E) обычно считаются конечными множествами. Многие хорошие результаты, полученные для конечных графов, неверны (или каким-либо образом отличаются) для бесконечных графов. Это происходит потому, что ряд соображений становятся ложными в случае бесконечных множеств. Вершины и рёбра графа называются также элементами графа, число вершин в графе | V | — порядком, число рёбер | E | — размером графа. Вершины u и v называются концевыми вершинами (или просто концами) ребра e = {u,v}. Ребро, в свою очередь, соединяет эти вершины. Две концевые вершины одного и того же ребра называются соседними. Два ребра называются смежными, если они имеют общую концевую вершину. Два ребра называются кратными, если множества их концевых вершин совпадают. Ребро называется петлёй, если его концы совпадают, то есть e = {v,v}. Степенью degV вершины V называют количество рёбер, для которых она является концевой (при этом петли считают дважды). Вершина называется изолированной, если она не является концом ни для одного ребра; висячей (или листом), если она является концом ровно одного ребра. http://ru.wikipedia.org/wiki/Граф_(математика)
|
|||||||